Artificial intelligence-driven virtual rehabilitation for people living in the community: A scoping review

0
Artificial intelligence-driven virtual rehabilitation for people living in the community: A scoping review
  • World Health Organization. Rehabilitation. (2023). Accessed: January 30, 2023.

  • Shanmugasegaram, S. et al. Psychometric validation of the cardiac rehabilitation barriers scale. Clin. Rehab. 26, 152–164 (2012).

    Article 

    Google Scholar 

  • Shirozhan, S., Arsalani, N., Maddah, S. S. B. & Mohammadi-Shahboulaghi, F. Barriers and facilitators of rehabilitation nursing care for patients with disability in the rehabilitation hospital: A qualitative study. Front. Public Health 10, 1–11 (2022).

    Article 

    Google Scholar 

  • Combes, J.-B., Elliott, R. F. & Skåtun, D. Hospital staff shortage: the role of the competitiveness of pay of different groups of nursing staff on staff shortage. Appl. Econ. 50, 6547–6552 (2018).

    Article 

    Google Scholar 

  • Krasovsky, T., Lubetzky, A. V., Archambault, P. S. & Wright, W. G. Will virtual rehabilitation replace clinicians: a contemporary debate about technological versus human obsolescence. J. NeuroEng. Rehabil. 17, 1–8 (2020).

    Article 

    Google Scholar 

  • Evenson, K. R. & Fleury, J. Barriers to outpatient cardiac rehabilitation participation and adherence. J. Cardiopulm. Rehabil. Prev. 20, 241–246 (2000).

    Article 
    CAS 

    Google Scholar 

  • Koning, C., Friesen, B., Daigle, J. & Ytsma, A. Virtual cardiac rehabilitation: A rapid shift in care delivery in response to the covid-19 pandemic. Patient Exp. J. 9, 205–211 (2022).

    Article 

    Google Scholar 

  • Boukhennoufa, I., Zhai, X., Utti, V., Jackson, J. & McDonald-Maier, K. D. Wearable sensors and machine learning in post-stroke rehabilitation assessment: A systematic review. Biomed. Signal Process. Control 71, 103197 (2022).

    Article 

    Google Scholar 

  • Naeemabadi, M. et al. Telerehabilitation for patients with knee osteoarthritis: a focused review of technologies and teleservices. JMIR Biomed. Eng. 5, e16991 (2020).

    Article 

    Google Scholar 

  • Rahman S, Sarker S, Haque AKMN, Uttsha MM, Islam MF, Deb S. AI-Driven Stroke Rehabilitation Systems and Assessment: A Systematic Review. IEEE Trans Neural Syst Rehabil Eng. 31, 192–207 (2023).

  • Baniña, M. C. et al. Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system. Disabil. Rehabil.: Assist. Technol. 17, 100–106 (2022).

    PubMed 

    Google Scholar 

  • Ahn, S. & Hwang, S. Virtual rehabilitation of upper extremity function and independence for stoke: A meta-analysis. J. Exercise Rehabil. 15, 358 (2019).

    Article 

    Google Scholar 

  • Aminov, A., Rogers, J. M., Middleton, S., Caeyenberghs, K. & Wilson, P. H. What do randomized controlled trials say about virtual rehabilitation in stroke? a systematic literature review and meta-analysis of upper-limb and cognitive outcomes. J. NeuroEng. Rehabil. 15, 1–24 (2018).

    Article 

    Google Scholar 

  • Peretti, A. et al. Telerehabilitation: review of the state-of-the-art and areas of application. JMIR Rehabil. Assist. Technol. 4, e7511 (2017).

    Article 

    Google Scholar 

  • Lambert, G., Drummond, K., Ferreira, V. & Carli, F. Teleprehabilitation during covid-19 pandemic: the essentials of “what” and “how”. Support. Care Cancer 29, 551–554 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Mani, S., Sharma, S., Omar, B., Paungmali, A. & Joseph, L. Validity and reliability of internet-based physiotherapy assessment for musculoskeletal disorders: a systematic review. J. Telemed. Telecare 23, 379–391 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Seron, P. et al. Effectiveness of telerehabilitation in physical therapy: a rapid overview. Phys. Ther. 101, pzab053 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amorim, P. et al. Machine learning applied to low back pain rehabilitation-a systematic review. Int. J. Digit. Health. 1, 1–14 (2021).

    Google Scholar 

  • Liao, Y., Vakanski, A., Xian, M., Paul, D. & Baker, R. A review of computational approaches for evaluation of rehabilitation exercises. Comput. Biol. Med. 119, 103687 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mangal, N. K. & Tiwari, A. K. A review of the evolution of scientific literature on technology-assisted approaches using rgb-d sensors for musculoskeletal health monitoring. Comput. Biol. Med. 132, 104316 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Capecci, M. et al. The kimore dataset: Kinematic assessment of movement and clinical scores for remote monitoring of physical rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 1436–1448 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, W., Su, C. & He, C. Rehabilitation exercise recognition and evaluation based on smart sensors with deep learning framework. IEEE Access 8, 77561–77571 (2020).

    Article 

    Google Scholar 

  • Rivas, J. J., Orihuela-Espina, F., Sucar, L. E., Williams, A. & Bianchi-Berthouze, N. Automatic recognition of multiple affective states in virtual rehabilitation by exploiting the dependency relationships. In 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), 1–7 (IEEE, 2019).

  • Eichner, N., Granados, A. & Saha, S. K. Factors that predict compliance in a virtual cardiac rehabilitation program. J. Am. Coll. Cardiol. 79, 1589–1589 (2022).

    Article 

    Google Scholar 

  • Bo, W. et al. A progressive prediction model towards home-based stroke rehabilitation programs. Smart Health 23, 100239 (2022).

    Article 

    Google Scholar 

  • Bouteraa, Y., Abdallah, I. B., Alnowaiser, K. & Ibrahim, A. Smart solution for pain detection in remote rehabilitation. Alex. Eng. J. 60, 3485–3500 (2021).

    Article 

    Google Scholar 

  • Bouteraa, Y., Abdallah, I. B., Ibrahim, A. & Ahanger, T. A. Fuzzy logic-based connected robot for home rehabilitation. J. Intell. Fuzzy Syst. 40, 4835–4850 (2021).

    Article 

    Google Scholar 

  • Resurreccion, D. M. et al. Barriers for nonparticipation and dropout of women in cardiac rehabilitation programs: a systematic review. J. Women’s Health 26, 849–859 (2017).

    Article 

    Google Scholar 

  • Resurrección, D. M. et al. Factors associated with non-participation in and dropout from cardiac rehabilitation programmes: a systematic review of prospective cohort studies. Eur. J. Cardiovasc. Nurs. 18, 38–47 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Daly, J. et al. Barriers to participation in and adherence to cardiac rehabilitation programs: a critical literature review. Prog. Cardiovasc. Nurs. 17, 8–17 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Soopramanien, A., Jamwal, S. & Thomas, P. W. Digital health rehabilitation can improve access to care in spinal cord injury in the uk: a proposed solution. Int. J. Telerehabil. 12, 3 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shulver, W., Killington, M., Morris, C. & Crotty, M. ‘well, if the kids can do it, i can do it’: older rehabilitation patients’ experiences of telerehabilitation. Health Expect. 20, 120–129 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ward, S., Orme, M., Zatloukal, J. & Singh, S. Adherence to walking exercise prescription during pulmonary rehabilitation in copd with a commercial activity monitor: a feasibility trial. BMC Pulm. Med. 21, 1–9 (2021).

    Article 

    Google Scholar 

  • Sjöholm, A. et al. Sedentary behaviour and physical activity of people with stroke in rehabilitation hospitals. Stroke Res. Treat. 2014 (2014).

  • Seto, E. et al. A mobile phone–based telemonitoring program for heart failure patients after an incidence of acute decompensation (medly-aid): protocol for a randomized controlled trial. JMIR Res. Protocols 9, e15753 (2020).

    Article 

    Google Scholar 

  • Abedi, A., Dayyani, F., Chu, C. & Khan, S. S. Maison – multimodal ai-based sensor platform for older individuals. In 2022 IEEE International Conference on Data Mining Workshops (ICDMW), 238–242 (2022).

  • Lugaresi, C. et al. Mediapipe: A framework for building perception pipelines. arXiv preprint arXiv:1906.08172 (2019).

  • Rivas, J. J. et al. Multi-label and multimodal classifier for affective states recognition in virtual rehabilitation. IEEE Trans. Affect. 13, 1183–1194 (2022).

  • Liao, Y., Vakanski, A. & Xian, M. A deep learning framework for assessing physical rehabilitation exercises. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 468–477 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandez-Cervantes, V., Neubauer, N., Hunter, B., Stroulia, E. & Liu, L. Virtualgym: A kinect-based system for seniors exercising at home. Entertainm. Comput. 27, 60–72 (2018).

    Article 

    Google Scholar 

  • Ebert, D., Metsis, V. & Makedon, F. Development and evaluation of a unity-based, kinect-controlled avatar for physical rehabilitation. In Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, 1–2 (2015).

  • Sangani, S., Patterson, K. K., Fung, J. & Lamontagne, A. et al. Real-time avatar-based feedback to enhance the symmetry of spatiotemporal parameters after stroke: instantaneous effects of different avatar views. IEEE Trans. Neural Syst. Rehabil. Eng. 28, 878–887 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Thorup, C. et al. Cardiac patients’ walking activity determined by a step counter in cardiac telerehabilitation: Data from the intervention arm of a randomized controlled trial. J. Med. Internet Res. 18, e5191 (2016).

    Article 

    Google Scholar 

  • Webster, D. & Celik, O. Systematic review of kinect applications in elderly care and stroke rehabilitation. J. NeuroEng. Rehabil. 11, 1–24 (2014).

    Article 

    Google Scholar 

  • Su, J., Zhang, Y., Ke, Q.-q, Su, J.-k & Yang, Q.-h Mobilizing artificial intelligence to cardiac telerehabilitation. Rev. Cardiovasc. Med. 23, 45 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Campagnini, S. et al. Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review. J. NeuroEng. Rehabil. 19, 1–22 (2022).

    Google Scholar 

  • Hao, J., Pu, Y., Chen, Z. & Siu, K.-C. Effects of virtual reality-based telerehabilitation for stroke patients: A systematic review and meta-analysis of randomized controlled trials. J. Stroke Cerebrovasc. Dis. 32, 106960 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Y. et al. Home-based technologies for stroke rehabilitation: A systematic review. Int. J. Med. Inform. 123, 11–22 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Stephenson, A. et al. Factors influencing the delivery of telerehabilitation for stroke: A systematic review. PloS One 17, e0265828 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nikolaev, V., Safonicheva, O. & Nikolaev, A. Telerehabilitation of post-stroke patients with motor function disorders: A review. Adv. Gerontol. 12, 339–346 (2022).

    Article 

    Google Scholar 

  • Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. International J. Soc. Res. Methodol. 8, 19–32 (2005).

    Article 

    Google Scholar 

  • Tricco, A. C. et al. Prisma extension for scoping reviews (prisma-scr): checklist and explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Booth, A. Clear and present questions: formulating questions for evidence based practice. Library hi tech. 24, 355–368 (2006).

    Article 

    Google Scholar 

  • Babineau, J. Product review: Covidence (systematic review software). J. Can. Health Lib. Assoc. 35, 68–71 (2014).

    Article 

    Google Scholar 

  • Pham, M. T. et al. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res. Synth. Methods 5, 371–385 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schez-Sobrino, S., Vallejo, D., Monekosso, D. N., Glez-Morcillo, C. & Remagnino, P. A distributed gamified system based on automatic assessment of physical exercises to promote remote physical rehabilitation. IEEE Access 8, 91424–91434 (2020).

    Article 

    Google Scholar 

  • Qiu, Q. et al. Development of the home based virtual rehabilitation system (hovrs) to remotely deliver an intense and customized upper extremity training. J. NeuroEng. Rehabil. 17, 1–10 (2020).

    Article 

    Google Scholar 

  • Ghorbel, E. et al. Home-based rehabilitation system for stroke survivors: a clinical evaluation. J. Med. Syst. 44, 1–11 (2020).

    Article 

    Google Scholar 

  • Fang, Q., Mahmoud, S. S., Kumar, A., Gu, X. & Fu, J. A longitudinal investigation of the efficacy of supported in-home post-stroke rehabilitation. IEEE Access 8, 138690–138700 (2020).

    Article 

    Google Scholar 

  • Tsvyakh, A. I. et al. Telerehabilitation of the knee joints of patients with polytrauma. Wiad Lek 74, 48–51 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fabio, R. A. et al. Comparing advanced with basic telerehabilitation technologies for patients with rett syndrome–a pilot study on behavioral parameters. Int. J. Environ. Res. Public Health 19, 507 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohli, R. & Gupta, A. A cross-sectional study to assess quality of care and patient satisfaction using theranow telerehabilitation program post-thr and tkr surgeries. J. Sci. Res. Med. Biol. Sci. 3, 28–33 (2022).

    Google Scholar 

  • Gupta, A. & Kohli, R. Impact of theranow telehealth physical therapy program on hospital readmission rate post major joint replacement surgery. J. Pharm. Res. Int. 34, 35–41 (2022).

    Google Scholar 

  • Zhang, H. et al. Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using rupert. In 2011 IEEE International Conference on Rehabilitation Robotics, 1–6 (IEEE, 2011).

  • Yu, L., Xiong, D., Guo, L. & Wang, J. A remote quantitative fugl-meyer assessment framework for stroke patients based on wearable sensor networks. Comput. Methods Prog. Biomed. 128, 100–110 (2016).

    Article 

    Google Scholar 

  • Triantafyllidis, A. et al. Computerized decision support for beneficial home-based exercise rehabilitation in patients with cardiovascular disease. Comput. Methods Prog. Biomed. 162, 1–10 (2018).

    Article 

    Google Scholar 

  • Ruano-Ravina, A. et al. Participation and adherence to cardiac rehabilitation programs. a systematic review. Int. J. Cardiol. 223, 436–443 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Tavares, E. et al. Barriers to gait training among stroke survivors: An integrative review. J. Funct. Morphol. Kinesiol. 7, 85 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miller, K. K., Porter, R. E., DeBaun-Sprague, E., Van Puymbroeck, M. & Schmid, A. A. Exercise after stroke: patient adherence and beliefs after discharge from rehabilitation. Top. Stroke Rehabil. 24, 142–148 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Threapleton, K., Drummond, A. & Standen, P. Virtual rehabilitation: What are the practical barriers for home-based research? Digital Health 2, 2055207616641302 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherry, K. Disability and rehabilitation: Essential considerations for equitable, accessible and poverty-reducing health care in south africa. South Afri. Health Rev. 2014, 89–99 (2014).

    Google Scholar 

  • Grace, S. L. et al. The role of systematic inpatient cardiac rehabilitation referral in increasing equitable access and utilization. J. Cardiopulm. Rehabil. Prev. 32, 41 (2012).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • Moore, G., Wilding, H., Gray, K. & Castle, D. et al. Participatory methods to engage health service users in the development of electronic health resources: systematic review. J. Particip. Med. 11, e11474 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duque, E., Fonseca, G., Vieira, H., Gontijo, G. & Ishitani, L. A systematic literature review on user centered design and participatory design with older people. In Proceedings of the 18th Brazilian symposium on human factors in computing systems, 1–11 (2019).

  • Matsangidou, M. et al. Participatory design and evaluation of virtual reality physical rehabilitation for people living with dementia. Virtual Real. 27, 1–18 (2022).

    Google Scholar 

  • Termoz, A. et al. Co-design and evaluation of a patient-centred transition programme for stroke patients, combining case management and access to an internet information platform: study protocol for a randomized controlled trial-navistroke. BMC Health Serv. Res. 22, 1–12 (2022).

    Article 

    Google Scholar 

  • Marent, B., Henwood, F., Darking, M. & Consortium, E. et al. Development of an mhealth platform for hiv care: gathering user perspectives through co-design workshops and interviews. JMIR mHealth and uHealth 6, e9856 (2018).

    Article 

    Google Scholar 

  • Lewis, J. R. The system usability scale: past, present, and future. Int. J. Hum.–Comput. Interact. 34, 577–590 (2018).

    Article 

    Google Scholar 

  • Brooke, J. Sus: a “quick and dirty’usability. Usability Eval. Ind. 189, 189–194 (1996).

    Google Scholar 

  • Stefanakis, M., Batalik, L., Antoniou, V. & Pepera, G. Safety of home-based cardiac rehabilitation: a systematic review. Heart Lung 55, 117–126 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Escalante-Gonzalbo, A. M. et al. Safety, feasibility, and acceptability of a new virtual rehabilitation platform: a supervised pilot study. Rehabil. Process Outcome 10, 11795727211033279 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulkarni, V., Kulkarni, M. & Pant, A. Survey of personalization techniques for federated learning. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), 794–797 (IEEE, 2020).

  • Rieke, N. et al. The future of digital health with federated learning. NPJ Digit. Med. 3, 119 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vepakomma, P., Gupta, O., Swedish, T. & Raskar, R. Split learning for health: Distributed deep learning without sharing raw patient data. arXiv preprint arXiv:1812.00564 (2018).

  • Abedi, A. & Khan, S. S. Fedsl: Federated split learning on distributed sequential data in recurrent neural networks. Multimed. Tools. Appl. 82, 1–21 (2023).

    Google Scholar 

  • Pfeiffer, K., Rapp, M., Khalili, R. & Henkel, J. Federated learning for computationally-constrained heterogeneous devices: A survey. ACM Comput. Surv. 55, 1–27 (2023).

    Article 

    Google Scholar 

  • Krittanawong, C. The rise of artificial intelligence and the uncertain future for physicians. Eur. J. Int. Med. 48, e13–e14 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ferreira, R., Santos, R. & Sousa, A. Usage of auxiliary systems and artificial intelligence in home-based rehabilitation: A review. Exploring the Convergence of Computer and Medical Science Through Cloud Healthcare 1, 163–196 (2023).

    Google Scholar 

  • Lykke, S. & Handberg, C. Experienced loneliness in home-based rehabilitation: perspectives of older adults with disabilities and their health care professionals. Glob. Qualit. Nurs. Res. 6, 2333393619831661 (2019).

    Google Scholar 

  • Tao, Y., Hu, H. & Zhou, H. Integration of vision and inertial sensors for 3d arm motion tracking in home-based rehabilitation. Int. J. Robot. Res. 26, 607–624 (2007).

    Article 

    Google Scholar 

  • Basiri, R. et al. Synthesizing diabetic foot ulcer images with diffusion model. arXiv preprint arXiv:2310.20140 (2023).

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *