The impact of using reinforcement learning to personalize communication on medication adherence: findings from the REINFORCE trial

0
The impact of using reinforcement learning to personalize communication on medication adherence: findings from the REINFORCE trial
  • Lauffenburger, J. C. & Choudhry, N. K. Text messaging and patient engagement in an increasingly mobile world. Circulation 133, 555–556 (2016).

    Article 
    PubMed 

    Google Scholar 

  • ElSayed, N. A. et al. Glycemic targets: standards of care in diabetes-2023. Diabetes Care 46, S97–S110 (2023).

    Article 
    PubMed 

    Google Scholar 

  • ElSayed, N. A. et al. Pharmacologic approaches to glycemic treatment: standards of care in diabetes-2023. Diabetes Care 46, S140–S157 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamine, S., Gerth-Guyette, E., Faulx, D., Green, B. B. & Ginsburg, A. S. Impact of mHealth chronic disease management on treatment adherence and patient outcomes: a systematic review. J. Med. Internet Res. 17, e52 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartz, J., Yingling, L. & Powell-Wiley, T. M. Use of mobile health technology in the prevention and management of diabetes mellitus. Curr. Cardiol. Rep. 18, 130 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Dobson, R., Whittaker, R., Pfaeffli Dale, L. & Maddison, R. The effectiveness of text message-based self-management interventions for poorly-controlled diabetes: a systematic review. Digit. Health 3, 2055207617740315 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Keller, P. A. Affect, framing, and persuasian. J. Mark. Res. 40, 54–64 (2003).

    Article 

    Google Scholar 

  • Gong, J. et al. The framing effect in medical decision-making: a review of the literature. Psychol. Health Med. 18, 645–653 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Yokum, D., Lauffenburger, J. C., Ghazinouri, R. & Choudhry, N. K. Letters designed with behavioural science increase influenza vaccination in Medicare beneficiaries. Nat. Hum. Behav. 2, 743–749 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Petty R. E. & Cacioppo J. T. The Elaboration Likelihood Model of Persuasion, (Springer Series in Social PsychologyL, 1986).

  • Thakkar, J. et al. Mobile telephone text messaging for medication adherence in chronic disease: a meta-analysis. JAMA Intern. Med. 176, 340–349 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Garofalo, R. et al. A randomized controlled trial of personalized text message reminders to promote medication adherence among HIV-positive adolescents and young adults. AIDS Behav. 20, 1049–1059 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahin, C., Courtney, K. L., Naylor, P. J. & Rhodes, R. E. Tailored mobile text messaging interventions targeting type 2 diabetes self-management: a systematic review and a meta-analysis. Digit. Health 5, 2055207619845279 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Choudhry, N. K. et al. Effect of a remotely delivered tailored multicomponent approach to enhance medication taking for patients with hyperlipidemia, hypertension, and diabetes: the STIC2IT cluster randomized clinical trial. JAMA Intern. Med. 178, 1182–1189 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choudhry, N. K. et al. Rationale and design of the Study of a Tele-pharmacy Intervention for Chronic diseases to Improve Treatment adherence (STIC2IT): A cluster-randomized pragmatic trial. Am. heart J. 180, 90–97 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lauffenburger, J. C. et al. Impact of a novel pharmacist-delivered behavioral intervention for patients with poorly-controlled diabetes: the ENhancing outcomes through Goal Assessment and Generating Engagement in Diabetes Mellitus (ENGAGE-DM) pragmatic randomized trial. PloS one 14, e0214754 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kassavou, A. et al. A highly tailored text and voice messaging intervention to improve medication adherence in patients with either or both hypertension and Type 2 diabetes in a UK primary care setting: feasibility randomized controlled trial of clinical effectiveness. J. Med. Internet Res. 22, e16629 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, L. A. et al. Effects of a tailored text messaging intervention among diverse adults with Type 2 diabetes: evidence from the 15-Month REACH randomized controlled trial. Diabetes Care 44, 26–34 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Hornstein, S., Zantvoort, K., Lueken, U., Funk, B. & Hilbert, K. Personalization strategies in digital mental health interventions: a systematic review and conceptual framework for depressive symptoms. Front. Digit. Health 5, 1170002 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, H. L. et al. Personalized mobile technologies for lifestyle behavior change: a systematic review, meta-analysis, and meta-regression. Prev. Med. 148, 106532 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Trella A. L., et al. Designing Reinforcement Learning Algorithms for Digital Interventions: Pre-Implementation Guidelines. Algorithms. Aug 2022;15 https://doi.org/10.3390/a15080255.

  • Lauffenburger, J. C. et al. REinforcement learning to improve non-adherence for diabetes treatments by Optimising Response and Customising Engagement (REINFORCE): study protocol of a pragmatic randomised trial. BMJ open 11, e052091 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jordan S. M., Chandak Y., Cohen D., ZHang M. & Thomas P. S. Evaluating the performance of reinforcement learning algorithms. In Proc. Thirty-Seventh International Conference on Machine Learning. 2020 https://proceedings.mlr.press/v119/jordan20a/jordan20a.pdf.

  • Yom-Tov, E. et al. Encouraging physical activity in patients with diabetes: intervention using a reinforcement learning system. J. Med. Internet Res. 19, e338 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piette, J. D. et al. The potential impact of intelligent systems for mobile health self-management support: Monte Carlo simulations of text message support for medication adherence. Ann. Behav. Med. 49, 84–94 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Liu, D., Yang, X., Wang, D. & Wei, Q. Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints. IEEE Trans. Cyber. 45, 1372–1385 (2015).

    Article 

    Google Scholar 

  • Hochberg, I. et al. Encouraging physical activity in patients with diabetes through automatic personalized feedback via reinforcement learning improves glycemic control. Diabetes Care 39, e59–e60 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Liao P., Greenewald K., Klasnja P. & Murphy S. Personalized HeartSteps: A Reinforcement Learning Algorithm for Optimizing Physical Activity. Proc ACM Interact Mob Wearable Ubiquitous Technol. Mar 2020;4 https://doi.org/10.1145/3381007.

  • Liu, X., Deliu, N. & Chakraborty, B. Microrandomized trials: developing just-in-time adaptive interventions for better public health. Am. J. Public Health 113, 60–69 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Guez, A., Vincent, R. D., Avoli, M. & Pineau, J. Treatment of epilepsy via batch-mode reinforcement learning. In Proc. Twenty-Third AAAI Conference on Artificial Intelligence. 2008:1671–1678 https://cdn.aaai.org/IAAI/2008/IAAI08-008.pdf.

  • Klasnja, P. et al. Micro-randomized trials: an experimental design for developing just-in-time adaptive interventions. Health Psychol. 34, 1220–1228 (2015).

    Article 
    PubMed Central 

    Google Scholar 

  • Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. The artificial intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 24, 1716–1720 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Collaborators GBDD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet. Jun 2023; https://doi.org/10.1016/S0140-6736(23)01301-6.

  • Kanyongo, W. & Ezugwu, A. E. Feature selection and importance of predictors of non-communicable diseases medication adherence from machine learning research perspectives. Inform. Med. Unlocked. 38, 101132 (2023).

    Article 

    Google Scholar 

  • Kanyongo, W. & Ezugwu, A. E. Machine learning approaches to medication adherence amongst NCD patients: A systematic literature review. Inform. Med. Unlocked. 38, 101210 (2023).

    Article 

    Google Scholar 

  • Cutler, R. L., Fernandez-Llimos, F., Frommer, M., Benrimoj, C. & Garcia-Cardenas, V. Economic impact of medication non-adherence by disease groups: a systematic review. BMJ open 8, e016982 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bitton, A., Choudhry, N. K., Matlin, O. S., Swanton, K. & Shrank, W. H. The impact of medication adherence on coronary artery disease costs and outcomes: a systematic review. Am. J. Med. 126, 357 e7–357.e27 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Arambepola, C. et al. The impact of automated brief messages promoting lifestyle changes delivered via mobile devices to people with Type 2 diabetes: a systematic literature review and meta-analysis of controlled trials. J. Med. Internet Res. 18, e86 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bobrow, K. et al. Mobile phone text messages to support treatment adherence in adults with high blood pressure (SMS-Text Adherence Support [StAR]): a single-blind, randomized trial. Circulation 133, 592–600 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandey, A., Krumme, A., Patel, T. & Choudhry, N. The impact of text messaging on medication adherence and exercise among postmyocardial infarction patients: randomized controlled pilot trial. JMIR Mhealth Uhealth 5, e110 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paredes P G-BR, Czerwinski M., Roseway A., Rowan K. & Hernandez J. PopTherapy: coping with stress through pop-culture. 109–117 (2014) https://dl.acm.org/doi/10.4108/icst.pervasivehealth.2014.255070.

  • Lauffenburger, J. C. et al. Comparison of a new 3-item self-reported measure of adherence to medication with pharmacy claims data in patients with cardiometabolic disease. Am. heart J. 228, 36–43 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shrank, W. H. et al. Are caregivers adherent to their own medications? J. Am. Pharmacists Assoc 51, 492–498 (2011).

    Article 

    Google Scholar 

  • Mehta S. J. et al. Comparison of pharmacy claims and electronic pill bottles for measurement of medication adherence among myocardial infarction patients. Med. care. https://doi.org/10.1097/MLR.0000000000000950.

  • Arnsten, J. H. et al. Antiretroviral therapy adherence and viral suppression in HIV-infected drug users: comparison of self-report and electronic monitoring. Clin. Infect. Dis. 33, 1417–1423 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Franklin, J. M. et al. Group-based trajectory models: a new approach to classifying and predicting long-term medication adherence. Med. Care 51, 789–796 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Garber, A. J. et al. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive TYPE 2 diabetes management algorithm – 2018 executive summary. Endocr. Pr. 24, 91–120 (2018).

    Article 

    Google Scholar 

  • Baptista, S. et al. User experiences with a Type 2 diabetes coaching app: qualitative study. JMIR Diabetes 5, e16692 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aguilera, A. et al. mHealth app using machine learning to increase physical activity in diabetes and depression: clinical trial protocol for the DIAMANTE Study. BMJ Open 10, e034723 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, P. A. et al. The REDCap consortium: building an international community of software platform partners. J. Biomed. Inf. 95, 103208 (2019).

    Article 

    Google Scholar 

  • Harris, P. A. et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 42, 377–381 (2009).

    Article 

    Google Scholar 

  • Wolf, M. S. et al. Development and validation of the consumer health activation index. Med. Decis. Mak. 38, 334–343 (2018).

    Article 

    Google Scholar 

  • Gardner, B., Abraham, C., Lally, P. & de Bruijn, G. J. Towards parsimony in habit measurement: testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index. Int. J. Behav. Nutr. Phys. Act. 9, 102 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volpp, K. G. et al. Effect of electronic reminders, financial incentives, and social support on outcomes after myocardial infarction: the heartstrong randomized clinical trial. JAMA Intern. Med. 177, 1093–1101 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bandura, A. Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215 (1977).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gintis, H. A framework for the unification of the behavioral sciences. Behav. Brain Sci. 30, 1–16 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Tzeng, O. C. & Jackson, J. W. Common methodological framework for theory construction and evaluation in the social and behavioral sciences. Genet. Soc. Gen. Psychol. Monogr. 117, 49–76 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Lauffenburger, J. C. et al. Preferences for mHealth technology and text messaging communication in patients with Type 2 diabetes: qualitative interview study. J. Med. Internet Res. 23, e25958 (2021). Jun.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baron, R. M. Social reinforcement effects as a function of social reinforcement history. Psychol. Rev. 73, 527–539 (1966).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lauffenburger J. C., Khan N. F., Brill G., Choudhry N. K. Quantifying social reinforcement among family members on adherence to medications for chronic conditions: a us-based retrospective cohort study. J. General Intern. Med. https://doi.org/10.1007/s11606-018-4654-9.

  • Viswanathan, M. et al. Interventions to improve adherence to self-administered medications for chronic diseases in the United States: a systematic review. Ann. Intern. Med. 157, 785–795 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Krakow, E. F. et al. Tools for the precision medicine era: how to develop highly personalized treatment recommendations from cohort and registry data using Q-learning. Am. J. Epidemiol. 186, 160–172 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laber, E. B., Linn, K. A. & Stefanski, L. A. Interactive model building for Q-learning. Biometrika 101, 831–847 (2014).

    Article 
    MathSciNet 
    PubMed 

    Google Scholar 

  • Nahum-Shani, I. et al. Q-learning: a data analysis method for constructing adaptive interventions. Psychol. Methods 17, 478–494 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Austin, P. C. Balance diagnostics for comparing the distribution of baseline covariates between treatment groups in propensity-score matched samples. Stat. Med. 28, 3083–3107 (2009).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lauffenburger, J. C. et al. Prevalence and impact of having multiple barriers to medication adherence in nonadherent patients with poorly controlled cardiometabolic disease. Am. J. Cardiol. 125, 376–382 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Easthall, C., Taylor, N. & Bhattacharya, D. Barriers to medication adherence in patients prescribed medicines for the prevention of cardiovascular disease: a conceptual framework. Int. J. Pharm. Pract. 27, 223–231 (2019).

    Article 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *