Mobile medical systems for equitable healthcare

0
Mobile medical systems for equitable healthcare
  • World Health Organization. Local production and technology transfer to increase access to medical devices — addressing the barriers and challenges in low-and middle-income countries; (2012).

  • Diaconu, K. et al. Methods for medical device and equipment procurement and prioritization within low-and middle-income countries: findings of a systematic literature review. Glob. Health 13, 59 (2017).

    Article 

    Google Scholar 

  • Vasan, A. & Friend, J. Medical devices for low- and middle-income countries: a review and directions for development. J. Med. Devices 14, 010803 (2020).

    Article 

    Google Scholar 

  • Haile, L. M. et al. Hearing loss prevalence and years lived with disability, 1990–2019: findings from the Global Burden of Disease Study 2019. Lancet 397, 996–1009 (2021).

    Article 

    Google Scholar 

  • Hay-McCutcheon, M. J., Threadgill, M., Yang, X. & Phillips, F. Access to hearing health care, geographical residency, and quality of life in adults with and without hearing loss. J. Am. Acad. Aud. 31, 485–495 (2020).

    Google Scholar 

  • Singer, D. E. et al. Impact of global geographic region on time in therapeutic range on warfarin anticoagulant therapy: data from the ROCKET AF clinical trial. J. Am. Heart Assoc. 2, e000067 (2013).

    Article 

    Google Scholar 

  • Mwita, J. C. et al. Quality of anticoagulation with warfarin at a tertiary hospital in Botswana. Clin. Appl. Thromb. 24, 596–601 (2018).

    Article 

    Google Scholar 

  • Semakula, J. R. et al. A cross-sectional evaluation of five warfarin anticoagulation services in Uganda and South Africa. PLoS ONE 15, e0227458 (2020).

    Article 

    Google Scholar 

  • Nandakumar, R., Gollakota, S. & Watson, N. Contactless sleep apnea detection on smartphones. In Proc. 13th Ann. Int. Conf. Mobile Systems, Applications, and Services 45–57 (ACM, 2015). This article reports a smartphone-based system that detects sleep apnoea events using its built-in speakers and microphones as an active sonar to track subtle chest movements.

  • Nandakumar, R., Gollakota, S. & Sunshine, J. E. Opioid overdose detection using smartphones. Sci. Transl. Med. 11, eaau8914 (2019).

    Article 

    Google Scholar 

  • Larson, E. C., Lee, T., Liu, S., Rosenfeld, M. & Patel, S. N. Accurate and privacy preserving cough sensing using a low-cost microphone. In Proc. 13th Int. Conf. Ubiquitous Computing (UbiComp ’11) 375–384 (ACM, 2011). This article reports a privacy-preserving cough detection system that uses mobile phone microphone audio while ensuring speech cannot be reconstructed intelligibly.

  • Wang, R. et al. StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 3–14 (ACM, 2014). This article reports a smartphone-based passive sensing app that continuously measures how workload affects stress, sleep, activity, mood, sociability, mental well-being and academic performance in a college student population.

  • Wang, R. et al. CrossCheck: toward passive sensing and detection of mental health changes in people with schizophrenia. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 886–897 (ACM, 2016).

  • Chikersal, P. et al. Predicting multiple sclerosis outcomes during the COVID-19 stay-at-home period: observational study using passively sensed behaviors and digital phenotyping. JMIR Ment. Health 9, e38495 (2022).

    Article 

    Google Scholar 

  • Chan, J., Raju, S., Nandakumar, R., Bly, R. & Gollakota, S. Detecting middle ear fluid using smartphones. Sci. Transl. Med. 11, eaav1102 (2019). This article reports a smartphone-based system that detects middle-ear fluid using its built-in speakers and microphones to assess eardrum mobility, and a paper funnel to channel sound in and out of the ear canal.

    Article 

    Google Scholar 

  • Chan, J., Michaelsen, K., Estergreen, J. K., Sabath, D. E. & Gollakota, S. Micro-mechanical blood clot testing using smartphones. Nat. Commun. 13, 831 (2022).

    Article 

    Google Scholar 

  • Goel, M. et al. Spirocall: measuring lung function over a phone call. In Proc. Conf. Human Factors in Computing Systems (CHI ’16) 5675–5685 (ACM, 2016). This article reports a system that enables spirometry on the phone using the standard telephony voice channel to transmit the sound of spirometry; this system can operate with or without a 3D-printed vortex whistle.

  • Barry, C., Xuan, Y., Fascetti, A., Moore, A. & Wang, E. J. Oscillometric blood pressure measurements on smartphones using vibrometric force estimation. Sci. Rep. 14, 26206 (2024).

    Article 

    Google Scholar 

  • Wang, A., Sunshine, J. E. & Gollakota, S. Contactless infant monitoring using white noise. In 25th Ann. Int. Conf. on Mobile Computing and Networking (MobiCom ’19) 52 (ACM, 2019).

  • Wang, A., Nguyen, D., Sridhar, A. R. & Gollakota, S. Using smart speakers to contactlessly monitor heart rhythms. Commun. Biol. 4, 319 (2021). This article reports a smart speaker-based system that uses active sonar to detect individual heartbeats and measure heart rate as well as inter-beat intervals for both regular and irregular rhythms.

    Article 

    Google Scholar 

  • Chan, J. et al. Performing tympanometry using smartphones. Commun. Med. 2, 57 (2022).

    Article 

    Google Scholar 

  • Ali, N. et al. An open-source smartphone otoacoustic emissions test for infants. Pediatrics 6, e2024068068 (2025).

    Article 

    Google Scholar 

  • Chan, J. et al. Wireless earbuds for low-cost hearing screening. In Proc. 21st Ann. Int. Conf. Mobile Systems, Applications and Services 84–95 (ACM, 2023).

  • Chan, J. et al. An off-the-shelf otoacoustic-emission probe for hearing screening via a smartphone. Nat. Biomed. Eng. 6, 1203–1213 (2022).

    Article 

    Google Scholar 

  • Chan, J. et al. Detecting clinical medication errors with AI enabled wearable cameras. npj Digit. Med. 7, 287 (2024).

    Article 

    Google Scholar 

  • Palumbo, A. Microsoft HoloLens 2 in medical and healthcare context: state of the art and future prospects. Sensors 22, 7709 (2022).

    Article 

    Google Scholar 

  • Muensterer, O. J., Lacher, M., Zoeller, C., Bronstein, M. & Kübler, J. Google Glass in pediatric surgery: an exploratory study. Int. J. Surg. 12, 281–289 (2014).

    Article 

    Google Scholar 

  • Wei, N. J., Dougherty, B., Myers, A. & Badawy, S. M. Using Google Glass in surgical settings: systematic review. JMIR mHealth uHealth 6, e9409 (2018).

    Article 

    Google Scholar 

  • Chan, J., Rea, T., Gollakota, S. & Sunshine, J. E. Contactless cardiac arrest detection using smart devices. npj Digit. Med. 2, 52 (2019).

    Article 

    Google Scholar 

  • Song, X. et al. SpiroSonic: monitoring human lung function via acoustic sensing on commodity smartphones. In Proc. 26th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’20) 52 (2020).

  • Yin, X. et al. PTEase: objective airway examination for pulmonary telemedicine using commodity smartphones. In Proc. 21st Ann. Int. Conf. Mobile Systems, Applications and Services 110–123 (ACM, 2023).

  • Watkins, T. Angelcare recalls baby monitors after 2 deaths. CNN Health (22 November 2013).

  • Skin integrity issues associated with pulse oximetry. Pennsylv. PSRS Patient Safety Advis. 2, 25–29 (2005).

  • Jin, Y. et al. Earhealth: an earphone-based acoustic otoscope for detection of multiple ear diseases in daily life. In Proc. 20th Ann. Int. Conf. Mobile Systems, Applications and Services 397–408 (ACM, 2022).

  • Fan, X., Pearl, D., Howard, R., Shangguan, L. & Thormundsson, T. APG: audioplethysmography for cardiac monitoring in hearables. In Proc. 29th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’23) 67 (ACM, 2023).

  • Poets, C. F., Meny, R. G., Chobanian, M. R. & Bonofiglo, R. E. Gasping and other cardiorespiratory patterns during sudden infant deaths. Pediatr. Res. 45, 350–354 (1999).

    Article 

    Google Scholar 

  • Lumsden, T. Observations on the respiratory centres in the cat. J. Physiol. 57, 153–160 (1923).

    Google Scholar 

  • Zhang, H. et al. PDVocal: towards privacy-preserving Parkinson’s disease detection using non-speech body sounds. In 25th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’19) 16 (ACM, 2019).

  • Rahman, T. et al. BodyBeat: a mobile system for sensing non-speech body sounds. MobiSys 14, 2–594 (2014).

    Google Scholar 

  • Dicpinigaitis, P. V. Chronic cough due to asthma: ACCP evidence-based clinical practice guidelines. Chest 129, 75S–79S (2006).

    Article 

    Google Scholar 

  • Fathi, H. et al. Cough in adult cystic fibrosis: diagnosis and response to fundoplication. Cough 5, 1 (2009).

    Article 

    Google Scholar 

  • Smith, J. & Woodcock, A. Cough and its importance in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 1, 305–314 (2006).

    Google Scholar 

  • Al Ismail, M., Deshmukh, S. & Singh, R. Detection of COVID-19 through the analysis of vocal fold oscillations. In Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 1035–1039 (IEEE, 2021).

  • Laguarta, J., Hueto, F. & Subirana, B. COVID-19 artificial intelligence diagnosis using only cough recordings. IEEE Open. J. Eng. Med. Biol. 1, 275–281 (2020).

    Article 

    Google Scholar 

  • Brown, C. et al. Exploring automatic diagnosis of COVID-19 from crowdsourced respiratory sound data. In Proc. 26th ACM/SIGKDD Int. Conf. Knowledge Discovery and Data Mining 3474–3484 (ACM, 2020).

  • Pinkas, G. et al. SARS-CoV-2 detection from voice. IEEE Open. J. Eng. Med. Biol. 1, 268–274 (2020).

    Article 

    Google Scholar 

  • Han, J. et al. Sounds of COVID-19: exploring realistic performance of audio-based digital testing. npj Digit. Med. 5, 16 (2022).

    Article 

    Google Scholar 

  • Dang, T. et al. Exploring longitudinal cough, breath, and voice data for COVID-19 progression prediction via sequential deep learning: model development and validation. J. Med. Internet Res. 24, e37004 (2022).

    Article 

    Google Scholar 

  • Whitehill, M., Garrison, J. & Patel, S. Whosecough: in-the-wild cougher verification using multitask learning. In Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 896–900 (IEEE, 2020).

  • Al Hossain, F., Lover, A. A., Corey, G. A., Reich, N. G. & Rahman, T. FluSense: a contactless syndromic surveillance platform for influenza-like illness in hospital waiting areas. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 1–28 (2020).

    Article 

    Google Scholar 

  • Dorafshanian, M., Aitsam, M., Mejri, M. & Di Nuovo, A. Beyond data collection: safeguarding user privacy in social robotics. In Int. Conf. Industrial Technology (ICIT) 1–6 (IEEE, 2024).

  • Little, M., McSharry, P., Hunter, E., Spielman, J. & Ramig, L. Suitability of dysphonia measurements for telemonitoring of Parkinson’s disease. IEEE Trans. Biomed. Eng. 56, 1015–1022 (2009).

    Article 

    Google Scholar 

  • Lu, H. et al. Stresssense: detecting stress in unconstrained acoustic environments using smartphones. In Proc. Conf. Ubiquitous Computing 351–360 (ACM, 2012). This article reports a smartphone-based system that detects stress in a user’s voice using microphone recordings captured in both indoor and outdoor environments.

  • Rachuri, K. K. et al. EmotionSense: a mobile phones based adaptive platform for experimental social psychology research. In Proc. 12th Int. Conf. Ubiquitous Computing 281–290 (ACM, 2010). This article reports a mobile sensing platform for social psychology studies that uses passive smartphone data to infer individual emotions, activities, and verbal and proximity interactions in a group.

  • Ma, D., Ferlini, A. & Mascolo, C. OESense: employing occlusion effect for in-ear human sensing. In Proc. 19th Ann. Int. Conf. Mobile Systems, Applications, and Services 175–187 (ACM, 2021).

  • Butkow, K.-J., Dang, T., Ferlini, A., Ma, D. & Mascolo, C. hEARt: motion-resilient heart rate monitoring with in-ear microphones. In Int. Conf. Pervasive Computing and Communications (PerCom) 200–209 (IEEE, 2023).

  • Gilliam, F. R. III et al. In-ear infrasonic hemodynography with a digital health device for cardiovascular monitoring using the human audiome. npj Digit. Med. 5, 189 (2022).

    Article 

    Google Scholar 

  • Prakash, J., Yang, Z., Wei, Y.-L., Hassanieh, H. & Choudhury, R. R. EarSense: earphones as a teeth activity sensor. In Proc. 26th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’20) 40 (ACM, 2020).

  • Chen, T. et al. Exploring the feasibility of remote cardiac auscultation using earphones. In Proc. 30th Ann. Int. Conf. Mobile Computing and Networking (Mobicom ’24) 357–372 (ACM, 2024).

  • Larson, E. C. et al. SpiroSmart: using a microphone to measure lung function on a mobile phone. In Proc. Conf. Ubiquitous Computing 280–289 (ACM, 2012).

  • Balakrishnan, G., Durand, F. & Guttag, J. Detecting pulse from head motions in video. In Proc. IEEE Conf. Computer Vision and Pattern Recognition 3430–3437 (IEEE, 2013).

  • De Haan, G. & Jeanne, V. Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60, 2878–2886 (2013).

    Article 

    Google Scholar 

  • Li, X., Chen, J., Zhao, G. & Pietikainen, M. Remote heart rate measurement from face videos under realistic situations. In Proc. Conf. Computer Vision and Pattern Recognition 4264–4271 (IEEE, 2014).

  • Poh, M.-Z., McDuff, D. J. & Picard, R. W. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt. Express 18, 10762–10774 (2010).

    Article 

    Google Scholar 

  • Poh, M.-Z., McDuff, D. J. & Picard, R. W. Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58, 7–11 (2010).

    Article 

    Google Scholar 

  • Tran, D. N., Lee, H. & Kim, C. A robust real time system for remote heart rate measurement via camera. In Int. Conf. Multimedia and Expo (ICME) 1–6 (IEEE, 2015).

  • Tulyakov, S. et al. Self-adaptive matrix completion for heart rate estimation from face videos under realistic conditions. In Proc. Conf. Computer Vision and Pattern Recognition 2396–2404 (IEEE, 2016).

  • Verkruysse, W., Svaasand, L. O. & Nelson, J. S. Remote plethysmographic imaging using ambient light. Opt. Express 16, 21434–21445 (2008).

    Article 

    Google Scholar 

  • Adhikary, R., Sadeh, M., Batra, N. & Goel, M. JoulesEye: energy expenditure estimation and respiration sensing from thermal imagery while exercising. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 7, 1–29 (2024).

    Google Scholar 

  • Mariakakis, A. et al. PupilScreen: using smartphones to assess traumatic brain injury. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 1, 1–27 (2017).

    Google Scholar 

  • Barry, C. et al. At-home pupillometry using smartphone facial identification cameras. In Proc. Conf. Human Factors in Computing Systems (CHI ’22) 1–12 (ACM, 2022).

  • Barry, C. & Wang, E. Racially fair pupillometry measurements for RGB smartphone cameras using the far red spectrum. Sci. Rep. 13, 13841 (2023).

    Article 

    Google Scholar 

  • Mariakakis, A., Wang, E., Patel, S. & Wen, J. C. A smartphone-based system for assessing intraocular pressure. In 38th Ann. Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBC) 4353–4356 (IEEE, 2016).

  • You, C.-W. et al. Carsafe app: alerting drowsy and distracted drivers using dual cameras on smartphones. In Proc. 11th Ann. Int. Conf. Mobile Systems, Applications, and Services (MobiSys ’13) 13–26 (ACM, 2013).

  • Khurana, R. & Goel, M. Eyes on the road: detecting phone usage by drivers using on-device cameras. In Proc. Conf. Human Factors in Computing Systems (CHI ’20) 1–11 (ACM, 2020).

  • Yue, S. & Katabi, D. Liquid testing with your smartphone. In Proc. 17th Ann. Int. Conf. on Mobile Systems, Applications, and Services (MobiSys ’19) 275–286 (ACM, 2019).

  • Chan, J., Raghunath, A., Michaelsen, K. E. & Gollakota, S. Testing a drop of liquid using smartphone LiDAR. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 6, 1–27 (2022).

    Article 

    Google Scholar 

  • Wang, E. J. et al. HemaApp: noninvasive blood screening of hemoglobin using smartphone cameras. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 593–604 (ACM, 2016). This article reports a smartphone-based system that noninvasively measures blood haemoglobin concentration by analysing the colour of blood in a user’s finger placed over the smartphone camera, using either the built-in light-emitting diode (LED) flash or incandescent light as the illumination source.

  • Wang, E. J., Zhu, J., Li, W., Rana, R. & Patel, S. HemaApp IR: noninvasive hemoglobin measurement using unmodified smartphone cameras and built-in LEDs. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing and Proc. Int. Symp. Wearable Computers 305–308 (ACM, 2017).

  • Wang, E. J., Li, W., Zhu, J., Rana, R. & Patel, S. N. Noninvasive hemoglobin measurement using unmodified smartphone camera and white flash. In 39th Ann. Int. Conf. Engineering in Medicine and Biology Society (EMBC) 2333–2336 (IEEE, 2017).

  • Hoffman, J. S. et al. Smartphone camera oximetry in an induced hypoxemia study. npj Digit. Med. 5, 146 (2022).

    Article 

    Google Scholar 

  • Bui, N. et al. Pho2: smartphone based blood oxygen level measurement systems using near-IR and red wave-guided light. In Proc. 15th Conf. Embedded Network Sensor Systems 26 (ACM, 2017).

  • Wang, E. J. et al. Seismo: blood pressure monitoring using built-in smartphone accelerometer and camera. In Proc. Conf. Human Factors in Computing Systems (CHI ’18) 425 (ACM, 2018).

  • Xuan, Y. et al. Ultra-low-cost mechanical smartphone attachment for no-calibration blood pressure measurement. Sci. Rep. 13, 8105 (2023).

    Article 

    Google Scholar 

  • De Greef, L. et al. Bilicam: using mobile phones to monitor newborn jaundice. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 331–342 (ACM, 2014). This article reports a smartphone-based system that uses an onboard camera to monitor newborn jaundice by detecting yellow discolouration, and leverages a colour calibration card to ensure consistency across different smartphones.

  • Taylor, J. A. et al. Use of a smartphone app to assess neonatal jaundice. Pediatrics 140, e20170312 (2017).

    Article 

    Google Scholar 

  • Mariakakis, A. et al. Biliscreen: smartphone-based scleral jaundice monitoring for liver and pancreatic disorders. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 1, 1–26 (2017).

    Google Scholar 

  • Mannino, R. G. et al. Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat. Commun. 9, 4924 (2018).

    Article 

    Google Scholar 

  • Babenko, B. et al. Detection of signs of disease in external photographs of the eyes via deep learning. Nat. Biomed. Eng. 6, 1370–1383 (2022).

    Article 

    Google Scholar 

  • Strutt, J. et al. CAPAPP: smartphone-based capillary refill index assessment in healthy children. In Proc. Conf. Design of Medical Devices V001T09A009 (ASME, 2023).

  • Eom, S., Sykes, D., Rahimpour, S. & Gorlatova, M. NeuroLens: augmented reality-based contextual guidance through surgical tool tracking in neurosurgery. In Int. Symp. Mixed and Augmented Reality (ISMAR) 355–364 (IEEE, 2022).

  • Jin, A. et al. Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In Winter Conf. Applications of Computer Vision (WACV) 691–699 (IEEE, 2018).

  • Shi, P., Zhao, Z., Hu, S. & Chang, F. Real-time surgical tool detection in minimally invasive surgery based on attention-guided convolutional neural network. IEEE Access 8, 228853–228862 (2020).

    Article 

    Google Scholar 

  • Goodman, E. D. et al. Analyzing surgical technique in diverse open surgical videos with multitask machine learning. JAMA Surg. 159, 185–192 (2024).

    Article 

    Google Scholar 

  • Fujii, R., Saito, H. & Kajita, H. EgoSurgery-tool: a dataset of surgical tool and hand detection from egocentric open surgery videos. Preprint at (2024).

  • Wang, R. et al. Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 2, 43 (2018).

    Google Scholar 

  • Chikersal, P. et al. Detecting depression and predicting its onset using longitudinal symptoms captured by passive sensing: a machine learning approach with robust feature selection. ACM Trans. Computer-Human Interact. (TOCHI) 28, 3 (2021).

    Article 

    Google Scholar 

  • Huckins, J. F. et al. Mental health and behavior of college students during the early phases of the COVID-19 pandemic: longitudinal smartphone and ecological momentary assessment study. J. Med. Internet Res. 22, e20185 (2020).

    Article 

    Google Scholar 

  • Wang, R. et al. Predicting symptom trajectories of schizophrenia using mobile sensing. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 1, 1–24 (2017).

    Google Scholar 

  • Adler, D. A. et al. Predicting early warning signs of psychotic relapse from passive sensing data: an approach using encoder-decoder neural networks. JMIR mHealth uHealth 8, e19962 (2020).

    Article 

    Google Scholar 

  • Kawsar, F., Min, C., Mathur, A. & Montanari, A. Earables for personal-scale behavior analytics. IEEE Pervasive Comput. 17, 83–89 (2018).

    Article 

    Google Scholar 

  • Min, C., Mathur, A. & Kawsar, F. Exploring audio and kinetic sensing on earable devices. In Proc. 4th Worksh. Wearable Systems and Applications 5–10 (ACM, 2018).

  • Bondareva, E., Hauksdóttir, E. R. & Mascolo, C. Earables for detection of bruxism: a feasibility study. In Adjunct Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing and Proc. Int. Symp. Wearable Computers 146–151 (ACM, 2021).

  • Bui, N. et al. eBP: a wearable system for frequent and comfortable blood pressure monitoring from user’s ear. In 25th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’19) 53 (ACM, 2019).

  • Pham, N. et al. WAKE: a behind-the-ear wearable system for microsleep detection. In Proc. 18th Int. Conf. Mobile Systems, Applications, and Services 404–418 (ACM, 2020).

  • Nguyen, A. et al. LIBS: a bioelectrical sensing system from human ears for staging whole-night sleep study. Commun. ACM 61, 157–165 (2018).

    Article 

    Google Scholar 

  • Aziz, A. et al. An unobtrusive and lightweight ear-worn system for continuous epileptic seizure detection. ACM Trans. Comput. Healthc. 6, 6 (2024).

    Google Scholar 

  • Chan, J. et al. PACT: privacy sensitive protocols and mechanisms for mobile contact tracing. IEEE Data Eng. Bull. 43, 15–35 (2020).

    Google Scholar 

  • Stevens, H. & Haines, M. B. TraceTogether: pandemic response, democracy, and technology. East. Asian Sci. Technol. Soc. Int. J. 14, 523–532 (2020).

    Article 

    Google Scholar 

  • Group, C. P. H. et al. Digital contact tracing technologies in epidemics: a rapid review. Cochrane Database Syst. Rev. 8, CD013699 (2020).

    Google Scholar 

  • Jones, N. R. et al. Two metres or one: what is the evidence for physical distancing in covid-19? BMJ 370, m3223 (2020).

    Article 

    Google Scholar 

  • Althoff, T. et al. Large-scale physical activity data reveal worldwide activity inequality. Nature 547, 336–339 (2017).

    Article 

    Google Scholar 

  • Lester, J., Choudhury, T. & Borriello, G. A practical approach to recognizing physical activities. In 4th Int. Conf. Pervasive Computing 1–16 (ACM, 2006).

  • Lu, H., Pan, W., Lane, N. D., Choudhury, T. & Campbell, A. T. Soundsense: scalable sound sensing for people-centric applications on mobile phones. In Proc. 7th Int. Conf. Mobile Systems, Applications, and Services 165–178 (ACM, 2009).

  • Chen, Z. et al. Unobtrusive sleep monitoring using smartphones. In 7th Int. Conf. Pervasive Computing Technologies for Healthcare and Workshops 145–152 (IEEE, 2013).

  • Lu, H. et al. The jigsaw continuous sensing engine for mobile phone applications. In Proc. 8th Conf. Embedded Networked Sensor Systems 71–84 (ACM, 2010).

  • LiKamWa, R., Liu, Y., Lane, N. D. & Zhong, L. Moodscope: building a mood sensor from smartphone usage patterns. In Proc. 11th Ann. Int. Conf. Mobile Systems, Applications, and Services 389–402 (ACM, 2013).

  • Lane, N. et al. Bewell: a smartphone application to monitor, model and promote wellbeing. In 5th Int. ICST Conf. Pervasive Computing Technologies for Healthcare (IEEE, 2012).

  • Lane, N. D. et al. Bewell: sensing sleep, physical activities and social interactions to promote wellbeing. Mob. Netw. Appl. 19, 345–359 (2014).

    Article 

    Google Scholar 

  • Rabbi, M., Aung, M. H., Zhang, M. & Choudhury, T. MyBehavior: automatic personalized health feedback from user behaviors and preferences using smartphones. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 707–718 (ACM, 2015).

  • Consolvo, S. et al. Activity sensing in the wild: a field trial of UbiFit Garden. In Proc. SIGCHI Conf. Human Factors in Computing Systems (CHI ’08) 1797–1806 (ACM, 2008).

  • Wang, R., Harari, G., Hao, P., Zhou, X. & Campbell, A. T. SmartGPA: how smartphones can assess and predict academic performance of college students. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 295–306 (ACM, 2015).

  • Ben-Zeev, D., Scherer, E. A., Wang, R., Xie, H. & Campbell, A. T. Next-generation psychiatric assessment: using smartphone sensors to monitor behavior and mental health. Psychiat. Rehabil. J. 38, 218 (2015).

    Article 

    Google Scholar 

  • Harari, G. M. et al. Using smartphones to collect behavioral data in psychological science: opportunities, practical considerations, and challenges. Persp. Psychol. Sci. 11, 838–854 (2016).

    Article 

    Google Scholar 

  • Lindhiem, O. et al. Objective measurement of hyperactivity using mobile sensing and machine learning: pilot study. JMIR Form. Res. 6, e35803 (2022).

    Article 

    Google Scholar 

  • Arakawa, R. et al. Lemurdx: using unconstrained passive sensing for an objective measurement of hyperactivity in children with no parent input. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 7, 1–23 (2023).

    Google Scholar 

  • Adler, D. A. et al. Identifying mobile sensing indicators of stress-resilience. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 5, 1–32 (2021).

    Article 

    Google Scholar 

  • Shao, Q. et al. Joey: supporting kangaroo mother care with computational fabrics. In Proc. 22nd Ann. Int. Conf. on Mobile Systems, Applications and Services 237–251 (ACM, 2024).

  • Guo, X. et al. Exploring biomagnetism for inclusive vital sign monitoring: modeling and implementation. In Proc. 30th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’24) 93–107 (ACM, 2024).

  • Truong, H. et al. Painometry: wearable and objective quantification system for acute postoperative pain. In Proc. 18th Int. Conf. Mobile Systems, Applications, and Services 419–433 (ACM, 2020).

  • Zhou, H. et al. One ring to rule them all: an open source smartring platform for finger motion analytics and healthcare applications. In Proc. 8th ACM/IEEE Conf. Internet-of-Things Design and Implementation (IoTDI) 27–38 (ACM/IEEE, 2023).

  • Zhou, H. et al. SignQuery: a natural user interface and search engine for sign languages with wearable sensors. In Proc. 29th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’23) 71 (ACM, 2023).

  • Zhou, H., Lu, T., DeHaan, K. & Gowda, M. ASLRing: American sign language recognition with meta-learning on wearables. In 9th Int. Conf. Internet-of-Things Design and Implementation (IoTDI) 203–214 (ACM/IEEE, 2024).

  • Yuan, K. et al. ToMoBrush: exploring dental health sensing using a sonic toothbrush. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 8, 1–27 (2024).

    Article 

    Google Scholar 

  • Hu, Z., Radmehr, A., Zhang, Y., Pan, S. & Nguyen, P. IOTeeth: intra-oral teeth sensing system for dental occlusal diseases recognition. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 8, 1–29 (2024).

    Google Scholar 

  • Tasnim Oshim, M. F., Killingback, J., Follette, D., Peng, H. & Rahman, T. MechanoBeat: monitoring interactions with everyday objects using 3D printed harmonic oscillators and ultra-wideband radar. In Proc. 33rd Ann. Symp. User Interface Software and Technology 430–444 (ACM, 2020).

  • Iyer, V., Chan, J., Culhane, I., Mankoff, J. & Gollakota, S. Wireless analytics for 3D printed objects. In Proc. 31st Ann. Symp. User Interface Software and Technology 141–152 (ACM, 2018).

  • L’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017).

    Article 

    Google Scholar 

  • Baltrušaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2018).

    Article 

    Google Scholar 

  • Rai, A., Chintalapudi, K. K., Padmanabhan, V. N. & Sen, R. Zee: zero-effort crowdsourcing for indoor localization. In Proc. 18th Ann. Int. Conf. Mobile Computing and Networking (MobiCom ’12) 293–304 (ACM, 2012).

  • Brajdic, A. & Harle, R. Walk detection and step counting on unconstrained smartphones. In Proc. Int. Joint Conf. Pervasive and Ubiquitous Computing 225–234 (ACM, 2013).

  • Seyyed-Kalantari, L., Zhang, H., McDermott, M. B., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 2176–2182 (2021).

    Article 

    Google Scholar 

  • Burlina, P., Joshi, N., Paul, W., Pacheco, K. D. & Bressler, N. M. Addressing artificial intelligence bias in retinal diagnostics. Transl. Vis. Sci. Technol. 10, 13 (2021).

    Article 

    Google Scholar 

  • Gianattasio, K. Z., Ciarleglio, A. & Power, M. C. Development of algorithmic dementia ascertainment for racial/ethnic disparities research in the US health and retirement study. Epidemiology 31, 126–133 (2020).

    Article 

    Google Scholar 

  • Park, Y. et al. Comparison of methods to reduce bias from clinical prediction models of postpartum depression. JAMA Netw. Open 4, e213909 (2021).

    Article 

    Google Scholar 

  • van Breugel, B., Liu, T., Oglic, D. & van der Schaar, M. Synthetic data in biomedicine via generative artificial intelligence. Nat. Rev. Bioeng. 2, 991–1004 (2024).

    Article 

    Google Scholar 

  • Goodfellow, I. et al. Generative adversarial networks. Commun. ACM 63, 139–144 (2020).

    Article 

    Google Scholar 

  • Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at (2013).

  • Arora, A. & Arora, A. Generative adversarial networks and synthetic patient data: current challenges and future perspectives. Future Healthc. J. 9, 190 (2022).

    Article 

    Google Scholar 

  • Wan, Z., Zhang, Y. & He, H. Variational autoencoder based synthetic data generation for imbalanced learning. In Symp. Series Computational Intelligence (SSCI) 1–7 (IEEE, 2017).

  • Li, Z., Zhu, H., Lu, Z. & Yin, M. Synthetic data generation with large language models for text classification: potential and limitations. In Proc. 2023 Conf. Empirical Methods in Natural Language Processing (ACL, 2023).

  • Viceconti, M. et al. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021).

    Article 

    Google Scholar 

  • Lecomte, F., Alvarez, P., Cotin, S. & Dillenseger, J.-L. Beyond respiratory models: a physics-enhanced synthetic data generation method for 2D–3D deformable registration. In Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition 2413–2421 (IEEE, 2024).

  • Myles, P., Ordish, J. & Tucker, A. The potential synergies between synthetic data and in silico trials in relation to generating representative virtual population cohorts. Prog. Biomed. Eng. 5, 013001 (2023).

    Article 

    Google Scholar 

  • Moss, A. J. Gender differences in ECG parameters and their clinical implications. Ann. Noninvasive Electrocardiol. 15, 1–2 (2010).

    Article 

    Google Scholar 

  • Khane, R. S. & Surdi, A. D. Gender differences in the prevalence of electrocardiogram abnormalities in the elderly: a population survey in India. Iran. J. Med. Sci. 37, 92–99 (2012).

    Google Scholar 

  • Nigg, B., Fisher, V. & Ronsky, J. Gait characteristics as a function of age and gender. Gait Posture 2, 213–220 (1994).

    Article 

    Google Scholar 

  • McKean, K. A. et al. Gender differences exist in osteoarthritic gait. Clin. Biomech. 22, 400–409 (2007).

    Article 

    Google Scholar 

  • Yu, S., Tan, T., Huang, K., Jia, K. & Wu, X. A study on gait-based gender classification. IEEE Trans. Image Process. 18, 1905–1910 (2009).

    Article 
    MathSciNet 

    Google Scholar 

  • Allen, J. & Murray, A. Age-related changes in the characteristics of the photoplethysmographic pulse shape at various body sites. Physiol. Meas. 24, 297–307 (2003).

    Article 

    Google Scholar 

  • Yousef, Q., Reaz, M. & Ali, M. A. M. The analysis of PPG morphology: investigating the effects of aging on arterial compliance. Meas. Sci. Rev. 12, 266–271 (2012).

    Article 

    Google Scholar 

  • Fouzas, S., Priftis, K. N. & Anthracopoulos, M. B. Pulse oximetry in pediatric practice. Pediatrics 128, 740–752 (2011).

    Article 

    Google Scholar 

  • Picone, D. S. et al. Influence of age on upper arm cuff blood pressure measurement. Hypertension 75, 844–850 (2020).

    Article 

    Google Scholar 

  • Feiner, J. R., Severinghaus, J. W. & Bickler, P. E. Dark skin decreases the accuracy of pulse oximeters at low oxygen saturation: the effects of oximeter probe type and gender. Anesth. Analg. 105, S18–S23 (2007).

    Article 

    Google Scholar 

  • Colvonen, P. J. Response to: investigating sources of inaccuracy in wearable optical heart rate sensors. npj Digit. Med. 4, 38 (2021).

    Article 

    Google Scholar 

  • Keller, M. D., Harrison-Smith, B., Patil, C. & Arefin, M. S. Skin colour affects the accuracy of medical oxygen sensors. Nature 610, 449–451 (2022).

    Article 

    Google Scholar 

  • Henry, N. R. et al. Disparities in hypoxemia detection by pulse oximetry across self-identified racial groups and associations with clinical outcomes. Crit. Care Med. 50, 204–211 (2022).

    Article 

    Google Scholar 

  • Schlosshan, D. & Elliott, M. Sleep.3: clinical presentation and diagnosis of the obstructive sleep apnoea hypopnoea syndrome. Thorax 59, 347–352 (2004).

    Article 

    Google Scholar 

  • Benzeghiba, M. et al. Automatic speech recognition and speech variability: a review. Speech Commun. 49, 763–786 (2007).

    Article 

    Google Scholar 

  • Koenecke, A. et al. Racial disparities in automated speech recognition. Proc. Natl Acad. Sci. USA 117, 7684–7689 (2020).

    Article 

    Google Scholar 

  • Hwang, W.-C., Myers, H. F., Abe-Kim, J. & Ting, J. Y. A conceptual paradigm for understanding culture’s impact on mental health: the cultural influences on mental health (CIMH) model. Clin. Psychol. Rev. 28, 211–227 (2008).

    Article 

    Google Scholar 

  • Henry, C. J., Quek, R. Y. C., Kaur, B., Shyam, S. & Singh, H. K. G. A glycaemic index compendium of non-Western foods. Nutr. Diabetes 11, 2 (2021).

    Article 

    Google Scholar 

  • Owen, M. et al. Diversity, equity, and inclusion in I&M: beyond the technology: wearables and the cultural compass. IEEE Instrum. Meas. Mag. 27, 38–43 (2024).

    Article 

    Google Scholar 

  • Pereira, T. et al. Photoplethysmography based atrial fibrillation detection: a review. npj Digit. Med. 3, 3 (2020).

    Article 

    Google Scholar 

  • Niemelä, M. J., Airaksinen, K. J. & Huikuri, H. V. Effect of beta-blockade on heart rate variability in patients with coronary artery disease. J. Am. Coll. Cardiol. 23, 1370–1377 (1994).

    Article 

    Google Scholar 

  • Eichelbaum, M. Drug metabolism in thyroid disease. Clin. Pharmacokinet. 1, 339–350 (1976).

    Article 

    Google Scholar 

  • van Zyl, L. T., Hasegawa, T. & Nagata, K. Effects of antidepressant treatment on heart rate variability in major depression: a quantitative review. Biopsychosoc. Med. 2, 12 (2008).

    Google Scholar 

  • Wichniak, A., Wierzbicka, A., Walęcka, M. & Jernajczyk, W. Effects of antidepressants on sleep. Curr. Psychiatry Rep. 19, 1–7 (2017).

    Article 

    Google Scholar 

  • Wang, X. & Luan, W. Research progress on digital health literacy of older adults: a scoping review. Front. Public Health 10, 906089 (2022).

    Article 

    Google Scholar 

  • Kemp, E. et al. Health literacy, digital health literacy and the implementation of digital health technologies in cancer care: the need for a strategic approach. Health Promot. J. Austr. 32, 104–114 (2021).

    Article 

    Google Scholar 

  • Tegegne, M. D. et al. Digital literacy level and associated factors among health professionals in a referral and teaching hospital: an implication for future digital health systems implementation. Front. Public Health 11, 1130894 (2023).

    Article 

    Google Scholar 

  • Adjekum, A., Blasimme, A. & Vayena, E. Elements of trust in digital health systems: scoping review. J. Med. Internet Res. 20, e11254 (2018).

    Article 

    Google Scholar 

  • Blalock, D., Gonzalez Ortiz, J. J., Frankle, J. & Guttag, J. What is the state of neural network pruning? Proc. Mach. Learn. Syst. 2, 129–146 (2020).

    Google Scholar 

  • Guo, Y. A survey on methods and theories of quantized neural networks. Preprint at (2018).

  • Gou, J., Yu, B., Maybank, S. J. & Tao, D. Knowledge distillation: a survey. Int. J. Comput. Vis. 129, 1789–1819 (2021).

    Article 

    Google Scholar 

  • Buciluǎ, C., Caruana, R. & Niculescu-Mizil, A. Model compression. In Proc. 12th ACM/SIGKDD Int. Conf. Knowledge Discovery and Data Mining 535–541 (ACM, 2006).

  • Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E. & Ramabhadran, B. Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In Int. Conf. Acoustics, Speech and Signal Processing (ICASSP) 6655–6659 (IEEE, 2013).

  • Elsken, T., Metzen, J. H. & Hutter, F. Neural architecture search: a survey. J. Mach. Learn. Res. 20, 1–21 (2019).

    MathSciNet 

    Google Scholar 

  • Nguyen, D. C. et al. Federated learning for smart healthcare: a survey. ACM Comput. Surv. (CSUR) 55, 60 (2022).

    Google Scholar 

  • Xu, J. et al. Federated learning for healthcare informatics. J. Healthc. Inform. Res. 5, 1–19 (2021).

    Article 

    Google Scholar 

  • Choudhury, O. et al. Anonymizing data for privacy-preserving federated learning. In ECAI 2020, 24th European Conference on Artificial Intelligence (IOS Press, 2020).

  • Iravantchi, Y., Ahuja, K., Goel, M., Harrison, C. & Sample, A. PrivacyMic: utilizing inaudible frequencies for privacy preserving daily activity recognition. In Proc. Conf. Human Factors in Computing Systems (CHI ’21) 198 (ACM, 2021).

  • Acar, A., Aksu, H., Uluagac, A. S. & Conti, M. A survey on homomorphic encryption schemes: theory and implementation. ACM Comput. Surv. (CSUR) 51, 79 (2018).

    Google Scholar 

  • Sagi, D., Spitzer-Shohat, S., Schuster, M., Daudi, L. & Rudolf, M. C. J. Teaching plain language to medical students: improving communication with disadvantaged patients. BMC Med. Educ. 21, 407 (2021).

    Article 

    Google Scholar 

  • Pinaya, W. H. et al. Brain imaging generation with latent diffusion models. In MICCAI Worksh. Deep Generative Models 117–126 (Springer, 2022).

  • Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: visualising image classification models and saliency maps. In Workshop at International Conference on Learning Representations (ICLR, 2013).

  • Kim, B. et al. Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In Int. Conf. Machine Learning 2668–2677 (PMLR, 2018).

  • Krause, J. et al. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125, 1264–1272 (2018).

    Article 

    Google Scholar 

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. In Proc. 31st Int. Conf. Neural Information Processing Systems (NIPS ’17) 4768–4777 (ACM, 2017).

  • Lundberg, S. M. et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

    Article 

    Google Scholar 

  • Ribeiro, M. T., Singh, S. & Guestrin, C. ‘Why should I trust you?’ Explaining the predictions of any classifier. In Proc. 22nd ACM/SIGKDD Int. Conf. Knowledge Discovery and Data Mining 1135–1144 (ACM, 2016).

  • Lechner, N. H. An overview of cybersecurity regulations and standards for medical device software. In Central Eur. Conf. Information and Intelligent Systems 237–249 (Faculty of Organization and Informatics, 2017).

  • Schmidt, A. Regulatory challenges in healthcare IT: ensuring compliance with HIPAA and GDPR. Acad. J. Sci. Technol. 3, 1–7 (2020).

    Google Scholar 

  • Cohen, I. G., Gerke, S. & Kramer, D. B. Ethical and legal implications of remote monitoring of medical devices. Milbank Q. 98, 1257–1289 (2020).

    Article 

    Google Scholar 

  • Alzghaibi, H. Examining healthcare practitioners’ perceptions of virtual physicians, mHealth applications, and barriers to adoption: insights for improving patient care and digital health integration. Int. J. Gen. Med. 18, 1865–1885 (2025).

    Article 

    Google Scholar 

  • Guo, X., Zhang, X. & Sun, Y. The privacy–personalization paradox in mHealth services acceptance of different age groups. Electron. Commer. Res. Appl. 16, 55–65 (2016).

    Article 

    Google Scholar 

  • Koelle, M., Wolf, K. & Boll, S. Beyond LED status lights-design requirements of privacy notices for body-worn cameras. In Proc. 12th Int. Conf. on Tangible, Embedded, and Embodied Interaction 177–187 (ACM, 2018).

  • Lindegren, D., Karegar, F., Kane, B. & Pettersson, J. S. An evaluation of three designs to engage users when providing their consent on smartphones. Behav. Inf. Technol. 40, 398–414 (2021).

    Article 

    Google Scholar 

  • Ayaz, M., Pasha, M. F., Alzahrani, M. Y., Budiarto, R. & Stiawan, D. The fast health interoperability resources (FHIR) standard: systematic literature review of implementations, applications, challenges and opportunities. JMIR Med. Inform. 9, e21929 (2021).

    Article 

    Google Scholar 

  • Dotson, P. CPT® codes: what are they, why are they necessary, and how are they developed? Adv. Wound Care 2, 583–587 (2013).

    Article 

    Google Scholar 

  • Chan, J. et al. Closed-loop wearable naloxone injector system. Sci. Rep. 11, 22663 (2021).

    Article 

    Google Scholar 

  • Mitrasinovic, S. et al. Clinical and surgical applications of smart glasses. Technol. Health Care 23, 381–401 (2015).

    Article 

    Google Scholar 

  • Breda, J., Springston, M., Mariakakis, A. & Patel, S. Feverphone: accessible core-body temperature sensing for fever monitoring using commodity smartphones. Proc. ACM Interact. Mob. Wearable Ubiq. Technol. 7, 1–23 (2023).

    Article 

    Google Scholar 

  • Preston, J., Brown, F. W. & Hartley, B. Using telemedicine to improve health care in distant areas. Psychiat. Serv. 43, 25–32 (1992).

    Article 

    Google Scholar 

  • Anawade, P. A., Sharma, D. & Gahane, S. A comprehensive review on exploring the impact of telemedicine on healthcare accessibility. Cureus 16, e55996 (2024).

    Google Scholar 

  • Vesga, O. et al. Highly sensitive scent-detection of COVID-19 patients in vivo by trained dogs. PLoS ONE 16, e0257474 (2021).

    Article 

    Google Scholar 

  • Rooney, N. J., Morant, S. & Guest, C. Investigation into the value of trained glycaemia alert dogs to clients with type I diabetes. PLoS ONE 8, e69921 (2013).

    Article 

    Google Scholar 

  • Cornu, J.-N., Cancel-Tassin, G., Ondet, V., Girardet, C. & Cussenot, O. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur. Urol. 59, 197–201 (2011).

    Article 

    Google Scholar 

  • Willis, C. M. et al. Olfactory detection of human bladder cancer by dogs: proof of principle study. BMJ 329, 712 (2004).

    Article 

    Google Scholar 

  • Strauch, M. et al. More than apples and oranges — detecting cancer with a fruit fly’s antenna. Sci. Rep. 4, 3576 (2014).

    Article 

    Google Scholar 

  • Qin, C. et al. Artificial olfactory biohybrid system: an evolving sense of smell. Adv. Sci. 10, 2204726 (2023).

    Article 

    Google Scholar 

  • Sakar, B. E. et al. Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings. IEEE J. Biomed. Health Inform. 17, 828–834 (2013).

    Article 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *