Predicting postprandial glucose excursions to personalize dietary interventions for type-2 diabetes management

0
Predicting postprandial glucose excursions to personalize dietary interventions for type-2 diabetes management
  • Ahmad, E., Lim, S., Lamptey, R., Webb, D. R. & Davies, M. J. Type 2 diabetes. Lancet 400, 1803–1820 (2022).

    Article 
    PubMed 

    Google Scholar 

  • GBD 2021 Diabetes Collaborators. Global, regional, and National burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the global burden of disease study 2021. Lancet 402, 203–234 (2023).

    Article 

    Google Scholar 

  • Chew, N. W. S. et al. The global burden of metabolic disease: data from 2000 to 2019. Cell. Metab. 35, 414–428e3 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Borse, S. P., Chhipa, A. S., Sharma, V., Singh, D. P. & Nivsarkar, M. Management of type 2 diabetes: current strategies, unfocussed aspects, challenges, and alternatives. Med. Princ Pract. 30, 109–121 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Umphonsathien, M. et al. Effects of intermittent very-low calorie diet on glycemic control and cardiovascular risk factors in obese patients with type 2 diabetes mellitus: A randomized controlled trial. J. Diabetes Invest. 13, 156–166 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sellahewa, L., Khan, C., Lakkunarajah, S. & Idris, I. A. Systematic Review of Evidence on the Use of Very Low Calorie Diets in People with Diabetes. (2017).

  • Bolla, A. M., Caretto, A., Laurenzi, A., Scavini, M. & Piemonti, L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients 11, (2019).

  • Low-glycemic index. Diets as an intervention for diabetes: a systematic review and meta-analysis. Am. J. Clin. Nutr. 110, 891–902 (2019).

    Article 

    Google Scholar 

  • Al-Adwi, M. E. et al. Effects of different diets on glycemic control among patients with type 2 diabetes: A literature review. Nutr. Health. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Systematic review and. meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 97, 505–516 (2013).

    Article 

    Google Scholar 

  • Ruijgrok, C. et al. Reducing postprandial glucose in dietary intervention studies and the magnitude of the effect on diabetes-related risk factors: a systematic review and meta-analysis. Eur. J. Nutr. 60, 259–273 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diabetes & Diagnosis & Tests. https://diabetes.org/about-diabetes/diagnosis

  • Antonio, C. Postprandial glucose regulation and diabetic complications. Arch. Intern. Med. 164, 2090–2095 (2004).

    Article 

    Google Scholar 

  • Hershon, K. S., Hirsch, B. R. & Odugbesan, O. Importance of postprandial glucose in relation to A1C and cardiovascular disease. Clin. Diabetes. 37, 250–259 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Post-prandial hyperglycemia. Is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients. Biochem. Biophys. Res. Commun. 336, 339–345 (2005).

    Article 

    Google Scholar 

  • Bent, B. et al. Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches. NPJ Digit. Med. 4, 89 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, D. J. et al. Behavioral strategies to lower postprandial glucose in those with type 2 diabetes May also lower risk of coronary heart disease. Diabetes Ther. 10, 277–281 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yao, J. et al. Diet, physical activity, and sleep in relation to postprandial glucose responses under free-living conditions: an intensive longitudinal observational study. Int. J. Behav. Nutr. Phys. Act. 21, 142 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leahy, J. J. L. et al. Optimizing postprandial glucose management in adults with Insulin-Requiring diabetes: report and recommendations. J. Endocr. Soc. 3, 1942–1957 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Association of the. Glucose patterns after a single nonstandardized meal with the habitual diet composition and features of the daily glucose profile in individuals without diabetes. Am. J. Clin. Nutr. 121, 246–255 (2025).

    Article 

    Google Scholar 

  • de Carvalho, G. B. et al. Effect of different dietary patterns on glycemic control in individuals with type 2 diabetes mellitus: A systematic review. Crit. Rev. Food Sci. Nutr. 60, 1999–2010 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hirsch, S., Barrera, G., Leiva, L., de la Maza, M. P. & Bunout, D. Variability of glycemic and insulin response to a standard meal, within and between healthy subjects. Nutr. Hosp. 28, 541–544 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pasmans, K., Meex, R. C. R., van Loon, L. J. C. & Blaak, E. E. Nutritional strategies to attenuate postprandial glycemic response. Obes Rev 23, e13486 (2022).

  • Gibney, E. R. Personalised nutrition – phenotypic and genetic variation in response to dietary intervention. Proceedings of the Nutrition Society 79, 236–245 (2020).

  • Brown, S. A. et al. Biobehavioral determinants of glycemic control in type 2 diabetes: A systematic review and meta-analysis. Patient Educ. Couns. 99, 1558–1567 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nelson, K. M., McFarland, L. & Reiber, G. Factors influencing disease Self-Management among veterans with diabetes and poor glycemic control. J. Gen. Intern. Med. 22, 442–447 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker, R. J., Smalls, B. L., Hernandez-Tejada, M. A., Campbell, J. A. & Egede, L. E. Effect of diabetes self-efficacy on glycemic control, medication adherence, self-care behaviors, and quality of life in a predominantly low-income, minority population. Ethn. Dis. 24, 349 (2014).

    PubMed 

    Google Scholar 

  • Hessler, D. et al. Reductions in regimen distress are associated with improved management and glycemic control over time. Diabetes Care. 37, 617–624 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berkowitz, S. A. et al. Food insecurity, food ‘deserts,’ and glycemic control in patients with diabetes: A longitudinal analysis. Diabetes Care. 41, 1188–1195 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rein, M. et al. Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Med. 20, 1–13 (2022).

    Article 

    Google Scholar 

  • Bush, C. L. et al. Toward the definition of personalized nutrition: A proposal by the American nutrition association. J. Am. Coll. Nutr. 39, 5–15 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bermingham, K. M. et al. Effects of a personalized nutrition program on cardiometabolic health: a randomized controlled trial. Nat. Med. 30, 1888–1897 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arias-Marroquín, A. T. et al. Personalized versus Non-personalized nutritional recommendations/interventions for type 2 diabetes mellitus remission: A narrative review. Diabetes Ther. 15, 749–761 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huynh, P., Fleisch, E., Brändle, M., Kowatsch, T. & Jovanova, M. Digital health technologies for metabolic disorders in older adults: A scoping review protocol. BioRxiv (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nahum-Shani, I. et al. Just-in-Time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).

    Article 
    PubMed 

    Google Scholar 

  • A Just-In-Time. Adaptive intervention (JITAI) for smoking cessation: feasibility and acceptability findings. Addict. Behav. 136, 107467 (2023).

    Article 

    Google Scholar 

  • Vinci, C. et al. Proximal effects of a Just-in-Time adaptive intervention for smoking cessation with wearable sensors: microrandomized trial. JMIR Mhealth Uhealth. 13, e55379 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardeman, W., Houghton, J., Lane, K., Jones, A. & Naughton, F. A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. Int. J. Behav. Nutr. Phys. Act. 16, 31 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daryabeygi-Khotbehsara, R. et al. Just-In-Time adaptive intervention to sit less and move more in people with type 2 diabetes: protocol for a microrandomized trial. JMIR Res. Protoc. 12, e41502 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, L. et al. A micro-randomized pilot study to examine the impact of just-in-time nudging on after-dinner snacking in adults with type 2 diabetes: A study protocol. Diabetes Obes. Metab. 25, 2439–2446 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Q. et al. Chinese diabetes datasets for data-driven machine learning. Sci. Data. 10, 35 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Annuzzi, G. et al. Impact of nutritional factors in blood glucose prediction in type 1 diabetes through machine learning. IEEE Access. 11, 17104–17115 (2023).

    Article 

    Google Scholar 

  • Xiong, X., Xue, Y., Cai, Y., He, J. & Su, H. Prediction of personalised postprandial glycaemic response in type 1 diabetes mellitus. Front. Endocrinol. 15, 1423303 (2024).

    Article 

    Google Scholar 

  • Darby, A., Strum, M. W., Holmes, E. & Gatwood, J. A. Review of nutritional tracking mobile applications for diabetes patient use. Diabetes Technol. Ther. 18, 200–212 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Corsica, J. A. et al. Mobile apps for diabetes self-management: an updated review of app features and effectiveness. J. Behav. Med. 48, 137–148 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Krukowski, R. A., Harvey, J., Borden, J., Stansbury, M. L. & West, D. S. Expert opinions on reducing dietary self-monitoring burden and maintaining efficacy in weight loss programs: A Delphi study. Obes. Sci. Pract. 8, 401–410 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beck, E. D. & Jackson, J. J. Personalized prediction of behaviors and experiences: an idiographic Person–Situation test. Psychol. Sci. 33, 1767–1782 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jovanova, M. A person-specific Approach To Predict Health Behaviors: a Proof of Concept (University of Pennsylvania, 2023).

  • Guizar-Heredia, R. et al. A new approach to personalized nutrition: postprandial glycemic response and its relationship to gut microbiota. Arch. Med. Res. 54, 176–188 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heber, D., Li, Z. & Ordovas, J. Precision Nutrition: the Science and Promise of Personalized Nutrition and Health (Elsevier, 2023).

  • Ceriello, A. Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54, 1–7 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. Projected rapid growth in diabetes disease burden and economic burden in china: a spatio-temporal study from 2020 to 2030. Lancet Reg. Health West. Pac. 33, 100700 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Model of personalized postprandial. Glycemic response to food developed for an Israeli cohort predicts responses in Midwestern American individuals. Am. J. Clin. Nutr. 110, 63–75 (2019).

    Article 

    Google Scholar 

  • Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nature Medicine 26, 964–973 (2020).

  • Søndertoft, N. B. et al. The intestinal Microbiome is a co-determinant of the postprandial plasma glucose response. PLOS ONE. 15, e0238648 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The physiologic. And phenotypic significance of variation in human amylase gene copy number. Am. J. Clin. Nutr. 108, 737–748 (2018).

    Article 

    Google Scholar 

  • Dods, R. F. Understanding Diabetes: A Biochemical Perspective (Wiley, 2013).

  • Rayner, C. K., Samsom, M., Jones, K. L. & Horowitz, M. Relationships of upper Gastrointestinal motor and sensory function with glycemic control. Diabetes Care. 24, 371–381 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marathe, C. S. et al. Hypoglycaemia and gastric emptying. Diabetes Obes. Metabolism. 21, 491–498 (2019).

    Article 

    Google Scholar 

  • Horowitz, M., Edelbroek, M. A., Wishart, J. M. & Straathof, J. W. Relationship between oral glucose tolerance and gastric emptying in normal healthy subjects. Diabetologia 36, 857–862 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shukla, A. P., Iliescu, R. G., Thomas, C. E. & Aronne, L. J. Food order has a significant impact on postprandial glucose and insulin levels. Diabetes Care. 38, e98–e99 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferguson, B. K. & Wilson, P. B. Ordered eating and its effects on various postprandial health markers: A systematic review. J. Am. Nutr. Assoc. 42, 746–757 (2023).

    PubMed 

    Google Scholar 

  • Acute effect of. Late evening meal on diurnal variation of blood glucose and energy metabolism. Obes. Res. Clin. Pract. 5, e220–e228 (2011).

    Article 

    Google Scholar 

  • Stevens, S. et al. The effectiveness of digital health technologies for patients with diabetes mellitus: A systematic review. Front. Clin. Diabetes Healthc. 3, 936752 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doyle-Delgado, K. & Chamberlain, J. J. Use of diabetes-Related applications and digital health tools by people with diabetes and their health care providers. Clin. Diabetes. 38, 449–461 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lehmann, M., Jones, L. & Schirmann, F. App engagement as a predictor of weight loss in Blended-Care interventions: retrospective observational study using Large-Scale Real-World data. J. Med. Internet. Res. 26, e45469 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Debong, F., Mayer, H. & Kober, J. Real-World assessments of mysugr mobile health app. Diabetes Technol. Ther. 21, S235–S240 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Sherazi, A. B. et al. Functions of mHealth diabetes apps that enable the provision of pharmaceutical care: criteria development and evaluation of popular apps. Int J. Environ. Res. Public. Health 20, 64 (2022).

  • Jovanova, M. et al. Psychological distance intervention reminders reduce alcohol consumption frequency in daily life. Sci. Rep. 13, 1–14 (2023).

    Article 

    Google Scholar 

  • Engeroff, T., Groneberg, D. A. & Wilke, J. After dinner rest a while, after supper walk a mile?? A systematic review with Meta-analysis on the acute postprandial glycemic response to exercise before and after meal ingestion in healthy subjects and patients with impaired glucose tolerance. Sports Med. 53, 849–869 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaur, B., Koh, M., Ponnalagu, S. & Henry, C. J. Postprandial blood glucose response: does the glycaemic index (GI) value matter even in the low GI range? Nutr. Diabetes. 10, 1–8 (2020).

    Article 

    Google Scholar 

  • Roshan, S. et al. The PROVIDE study: primary care assessment of the ROche IPDM tools for validation and implementation in diabetes management and evaluation. MedRxiv 2023.12.23.23300283 (2023).

  • Crossen, S. S., Romero, C. C., Lewis, C. & Glaser, N. S. Remote glucose monitoring is feasible for patients and providers using a commercially available population health platform. Front. Endocrinol. 14, 1063290 (2023).

    Article 

    Google Scholar 

  • Giger, O. F. et al. Digital health technologies and innovation patterns in diabetes ecosystems. Digit. HEALTH. (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gastaldi, G. et al. Swiss recommendations of the society for endocrinology and diabetes (SGED/SSED) for the treatment of type 2 diabetes mellitus (2023). Swiss Med. Wkly. 153, 40060 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giger, O. F., Fleisch, E., Jovanova, M. & Kowatsch, T. Barriers and facilitators of implementing value-based care: the case of SwissDiabeter. Digit. Health. 11, 20552076251336322 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolffenbuttel, B. H. R. et al. Ethnic differences in glycemic markers in patients with type 2 diabetes. Diabetes Care. 36, 2931–2936 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kodama, K. et al. Ethnic differences in the relationship between insulin sensitivity and insulin response: A systematic review and meta-analysis. Diabetes Care. 36, 1789–1796 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajput, D., Wang, W. J. & Chen, C. C. Evaluation of a decided sample size in machine learning applications. BMC Bioinform. 24, 1–17 (2023).

    Article 

    Google Scholar 

  • Brügger, V., Kowatsch, T. & Jovanova, M. Wearables and smartphones for modifiable risk factors in metabolic health: a scoping review protocol. BioRxiv (2024).

    Article 

    Google Scholar 

  • Walton, A., Nahum-Shani, I., Crosby, L., Klasnja, P. & Murphy, S. Optimizing digital integrated care via Micro-Randomized trials. Clin. Pharmacol. Ther. 104, 53–58 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Fuchs, M., Wirth, B., Bilz, S., Brändle, M., Kowatsch, T. & Jovanova, M. Exploring message receptivity and protocol adherence in a clinical study: a micro-randomized trial protocol. Proc. CHI Conf. Hum. Factors Comput. Syst. 2025, Yokohama, Japan (2025).

  • Relationship between. intra-individual variability in nutrition-related lifestyle behaviors and blood glucose outcomes under free-living conditions in adults without type 2 diabetes. Diabetes Res. Clin. Pract. 196, 110231 (2023).

    Article 

    Google Scholar 

  • Rao, W. & Diabetes Datasets ShanghaiT1DM and ShanghaiT2DM. (2023). https://doi.org/10.6084/m9.figshare.c.6310860

  • Gabir, M. M. et al. The 1997 American diabetes association and 1999 world health organization criteria for hyperglycemia in the diagnosis and prediction of diabetes. Diabetes Care. 23, 1108–1112 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, A. & White, J. R. FreeStyle libre 3. Clin. Diabetes. 41, 127–128 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, Y. et al. A community-based cross-sectional study of dietary composition and associated factors among tuberculosis patients in China. Sci. Rep. 14, 2676 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacober, S. J. et al. Basal insulin peglispro: overview of a novel long-acting insulin with reduced peripheral effect resulting in a hepato-preferential action. Diabetes Obes. Metab. 18 (Suppl 2), 3–16 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • NHS. About intermediate-acting insulin. (2023). https://www.nhs.uk/medicines/insulin/intermediate-acting-insulin/about-intermediate-acting-insulin/

  • Howard, J. Y. & Watts, S. A. Bolus insulin prescribing recommendations for patients with type 2 diabetes mellitus. Fed. Pract. 34, S26–S31 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arungarinathan, G., McKay, G. A. & Fisher, M. Drugs for diabetes: part 4 acarbose. Br. J. Cardiol. 18 (2), 78–81 (2011).

    Google Scholar 

  • Brouns, F. et al. Glycaemic index methodology. Nutr. Res. Rev. 18, 145–171 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Q., Bedi, T., Lehmann, C. U., Xiao, G. & Xie, Y. Evaluating short-term forecasting of COVID-19 cases among different epidemiological models under a Bayesian framework. Gigascience 10, (2021).

  • Vabalas, A., Gowen, E., Poliakoff, E. & Casson, A. J. Machine learning algorithm validation with a limited sample size. PLOS ONE. 14, e0224365 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The effect of. Machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features. NeuroImage 178, 622–637 (2018).

    Article 

    Google Scholar 

  • Dhiman, P. et al. Sample size requirements are not being considered in studies developing prediction models for binary outcomes: a systematic review. BMC Med. Res. Methodol. 23, 1–11 (2023).

    Article 

    Google Scholar 

  • Soyster, P. D., Ashlock, L. & Fisher, A. J. Pooled and person-specific machine learning models for predicting future alcohol consumption, craving, and wanting to drink: A demonstration of parallel utility. Psychol. Addict. Behav. 36, 296–306 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jacobson, N. C. & Chung, Y. J. Passive sensing of prediction of Moment-To-Moment depressed mood among undergraduates with clinical levels of depression sample using smartphones. Sensors (Basel) 20, 3572 (2020).

  • Chen, T. & Guestrin, C. XGBoost. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data MiningACM, New York, NY, USA, (2016). https://doi.org/10.1145/2939672.2939785

  • Zignoli, A., Skroce, K., Lipman, D. J. & Zisser, H. C. Personalized nutrition and machine-learning: exploring the scope of continuous glucose monitoring in healthy individuals in uncontrolled settings. Biomed. Signal. Process. Control. 90, 105809 (2024).

    Article 
    CAS 

    Google Scholar 

  • Agah, A. Medical Applications of Artificial Intelligence (CRC, 2013).

  • Prendin, F. et al. The importance of interpreting machine learning models for blood glucose prediction in diabetes: an analysis using SHAP. Sci. Rep. 13, 16865 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *